1. | H.T. Liu(2022). QUENCHING BEHAVIOR OF THE SOLUTION FOR THE PROBLEMS WITH SEQUENTIAL CONCENTRATED SOURCES. MATTER: International Journal of Science and Technology, 8(3), 1-11.
|
2. | H. T. Liu(2021). Existence of the Solution for the Problem in Subdiffusive Medium with a Moving Concentrated Source. International Journal of Applied Physics and Mathematics, 11(4), 71-77. EI
|
3. | H. T. Liu(2019). Blow-up behavior of the Solution for the problem in a subdiffusive mediums. Mathematical Methods in the Applied Sciences, 42(16). SSCI
|
4. | H.T. Liu, C.Y. Chan(2018). Existence of Solution for the Problem with a Concentrated Source in a Subdiffusive Medium. Journal of Integral Equations and Applications, 30(1), 41-65. SCIE(SCI)
|
5. | H.T.Liu, W. Y. Chan(2017). Finding the Critical Domain of Multi-dimensional Quenching Problems. Neural, Parallel, and Scientific Computations, 25, 19-28.
|
6. | H. T. Liu, Chien-Wei Chang(2016). Impulsive Effects On the Existence of Solution for a Fractional Diffusion Equation. Dynamic Systems and Applications, 25. SCIE(SCI)
|
7. | H. T. Liu(2016). Strong Maximum Principles for Fractional Diffusion Differential Equations. Dynamic Systems and Appliactions, 25. SCIE(SCI)
|
8. | H. T. Liu, C.Y. Chan(2016). A Maximum Principle for Fractional Diffusion Differential Equations. Quarterly of Applied Mathematics, 64(3). SCIE(SCI)
|
9. | H. T. Liu(2014). Quenching Rates for Parabolic Problems due to a Concentrated Nonlinear Source. Dynamic Systems and Appliactions, 23(1). SCIE(SCI)
|
10. | H. T. Liu, Chien-Wei Chang(2014). Quenching Behavior of Parabolic Problems with Localized Reaction Term. Mathematics and Statistics, 2.
|
11. | H. T. Liu, W. Y. Chan(2011). Blow-up and Quenching for Coupled Semilinear Parabolic Systems. Applied Mathematical Sciences, 5.
|
12. | H. T. Liu(2010). Existence and non-existence of global solutions for coupled parabolic systems. Proceedings of Neural, Parallel, and Scientific Computations, 4.
|
13. | H.T. Liu, C. Y. Chan(2009). Quenching for degenerate parabolic problems with nonlocal boundary conditions. Dynamic Systems and Applications, 18. SCIE(SCI)
|
14. | H. T. Liu, Sheng-Hung Chen(2008). Blow-up for semilinear integro-differential equations with nonlocal boundary conditions. Proceedings of Dynamic Systems and Applications 5, 2008. SCIE(SCI)
|
15. | H. T. Liu, C. Y. Chan(2007). Existence and quenching of the solution for a nonlocal semilinear parabolic problem. Dynamic Systems and Applications, 16. SCIE(SCI)
|
16. | H. T. Liu, F. Y. Wen(2002). Blow-up Phenomena for a Degenerate Parabolic Problem with Nonlocal source. Proceedings of Neural, Parallel and Scientific Computations, 2.
|
17. | H. T. Liu(2001). Impulsive effects on the existence of solution for a fast diffusion equation. Proceedings of the International Conference on Dynamical Systems and Differential Equations, 2001. SCIE(SCI)
|
18. | C. Y. Chan, H. T. Liu(2001). Initial data for a single-point quenching. Dynam. Contin. Discrete Impuls. Systems (Series A), 8. SCIE(SCI)
|
19. | C. Y. Chan, H.T. Liu(2001). Does quenching for degenerate parabolic equations occur at the boundary. Dynam. Contin. Discrete Impuls. Systems (Series A), 8. SCIE(SCI)
|
20. | C. Y. Chan, H. T. Liu(1998). Global existence of solutions for degenerate semilinear parabolic problems. Nonlinear Anal., 34. SCIE(SCI)
|
21. | C.Y. Chan, H. T. Liu(1996). Blow-up phenomena for degenerate semilinear parabolic equations. Proceedings of the Second International Conference on Dynamic Systems and Applications, 2. SCIE(SCI)
|
22. | C. Y. Chan, H. T. Liu(1996). Quenching in infinite time on the N-dimensional ball. Dynam. Contin. Discrete Impul. Systems, 2. SCIE(SCI)
|